Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues.

نویسندگان

  • Tricia Moore
  • Linda Beltran
  • Steve Carbajal
  • Sara Strom
  • Jeanine Traag
  • Stephen D Hursting
  • John DiGiovanni
چکیده

The prevalence of obesity, an established risk factor for several types of cancer, has increased steadily over the past several decades in the United States. New targets and strategies for offsetting the effect of obesity on cancer risk are urgently needed. In the present study, we examined the effect of dietary energy balance manipulation on steady-state signaling in multiple epithelial tissues, with a focus on the Akt and mammalian target of rapamycin (mTOR) pathways. For these experiments, male FVB/N and C57BL/6 and female ICR mice were maintained on a control (10 kcal% fat) diet, a diet-induced obesity (DIO; 60 kcal% fat) regimen, or a 30% calorie restriction (CR) regimen for 15 to 17 weeks. Relative to the control group, the DIO regimen increased, whereas CR decreased, circulating insulin-like growth factor-I (IGF-I) as has previously been reported. Western blot analyses showed that the DIO regimen enhanced, whereas CR inhibited, activation of Akt and mTOR, regardless of epithelial tissue or genetic background. In contrast, activation of AMP-activated protein kinase was modulated by dietary energy balance manipulation in the liver but not in the epidermis or dorsolateral prostate. Western blot analyses of epidermal extracts taken from ICR mice also revealed reduced activation of both the IGF-I receptor and epidermal growth factor receptor in CR mice, compared with control mice or mice maintained on the DIO regimen. Taken together, these novel findings suggest that dietary energy balance modulates signaling through cell-surface receptors (i.e., IGF-I receptor and epidermal growth factor receptor), affecting activation of multiple downstream pathways including Akt and mTOR, thus providing important dietary and pharmacologic targets for disrupting the obesity-cancer link.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition.

During development and in pathological contexts such as fibrosis and cancer progression, epithelial cells can initiate a complex transcriptional reprogramming, accompanied by dramatic morphological changes, in a process named 'epithelial-mesenchymal transition' (EMT). In this transition, epithelial cells lose their epithelial characteristics to acquire mesenchymal properties and increased motil...

متن کامل

Cancer Prevention Research Dietary Energy Balance Modulates Signaling through the Akt/Mammalian Target of Rapamycin Pathways in Multiple Epithelial Tissues

The prevalence of obesity, an established risk factor for several types of cancer, has increased steadily over the past several decades in the United States. New targets and strategies for offsetting the effect of obesity on cancer risk are urgently needed. In the present study, we examined the effect of dietary energy balance manipulation on steady-state signaling in multiple epithelial tissue...

متن کامل

The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review

Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...

متن کامل

Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review

Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer prevention research

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2008